The Baum-connes Conjecture via Localization of Categories

نویسنده

  • RALF MEYER
چکیده

We redefine the Baum-Connes assembly map using simplicial approximation in the equivariant Kasparov category. This new interpretation is ideal for studying functorial properties and gives analogues of the assembly maps for all equivariant homology theories, not just for the K-theory of the crossed product. We extend many of the known techniques for proving the Baum-Connes conjecture to this more general setting.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Baum-connes Conjecture for Hyperbolic Groups

The Baum-Connes conjecture states that, for a discrete group G, the K-homology groups of the classifying space for proper G-action is isomorphic to the K-groups of the reduced group C-algebra of G [3, 2]. A positive answer to the Baum-Connes conjecture would provide a complete solution to the problem of computing higher indices of elliptic operators on compact manifolds. The rational injectivit...

متن کامل

Expanders, Exact Crossed Products, and the Baum-connes Conjecture

Abstract. We reformulate the Baum-Connes conjecture with coe cients by introducing a new crossed product functor for C⇤-algebras. All confirming examples for the original Baum-Connes conjecture remain confirming examples for the reformulated conjecture, and at present there are no known counterexamples to the reformulated conjecture. Moreover, some of the known expander-based counterexamples to...

متن کامل

Deformation Quantization and the Baum–Connes Conjecture

Alternative titles of this paper would have been “Index theory without index” or “The Baum–Connes conjecture without Baum.” In 1989, Rieffel introduced an analytic version of deformation quantization based on the use of continuous fields ofC∗-algebras. We review how a wide variety of examples of such quantizations can be understood on the basis of a single lemma involving amenable groupoids. Th...

متن کامل

K-théorie Bivariante Pour Les Algèbres De Banach, Groupoïdes Et Conjecture De Baum–connes. Avec Un Appendice D’hervé Oyono-oyono

We construct a KK-theory for Banach algebras, equivariant with respect to the action of a groupoid. We prove the Baum–Connes conjecture with commutative coefficients for hyperbolic groups and for the Poincaré groupoids of foliations with a compact base and a longitudinal Riemannian metrics with negative sectional curvature. Mots clés : théorie de Kasparov ; conjecture de Baum–Connes ; algèbres ...

متن کامل

Finite group extensions and the Baum-Connes conjecture

In this note, we exhibit a method to prove the Baum-Connes conjecture (with coefficients) for extensions with finite quotients of certain groups which already satisfy the Baum-Connes conjecture. Interesting examples to which this method applies are torsion-free finite extensions of the pure braid groups, e.g. the full braid groups. The Baum-Connes conjecture (in this note the term will always m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008